Global geometric entanglement in transverse-field XY spin chains: finite and infinite systems
نویسندگان
چکیده
The entanglement in quantum XY spin chains of arbitrary length is investigated via the geometric measure of entanglement. The emergence of entanglement is explained intuitively from the perspective of perturbations. The model is solved exactly and the energy spectrum is determined and analyzed in particular for the lowest two levels for both finite and infinite systems. The overlaps for these two levels are calculated analytically for arbitrary number of spins. The entanglement is hence obtained by maximizing over a single parameter. The corresponding ground-state entanglement surface is then determined over the entire phase diagram, and its behavior can be used to delineate the boundaries in the phase diagram. For example, the field-derivative of the entanglement becomes singular along the critical line. The form of the divergence is derived analytically and it turns out to be dictated by the universality class controlling the quantum phase transition. The behavior of the entanglement near criticality can be understood via a scaling hypothesis, analogous to that for free energies. The entanglement density vanishes along the so-called disorder line in the phase diagram, the ground space is doubly degenerate and spanned by two product states. The entanglement for the super-position of the lowest two states is also calculated. The exact value of the entanglement depends on the specific form of superposition. However, in the thermodynamic limit the entanglement density turns out to be independent of the superposition. This proves that the entanglement density is insensitive to whether the ground state is chosen to be the spontaneously Z 2 symmetry broken one or not. The finite-size scaling of entanglement at critical points is also investigated from two different view points. First, the maximum in the field-derivative of the entanglement density is computed and fitted to a logarithmic dependence of the system size, thereby deducing the correlation length exponent for the Ising class using only the behavior of entanglement. Second, the entanglement density itself is shown to possess a correction term inversely proportional to the system size, with the coefficient being universal (but with different values for the ground state and the first excited state, respectively).
منابع مشابه
Phase diagrams of one-, two-, and three-dimensional quantum spin systems
We study the bipartite entanglement per bond to determine characteristic features of the phase diagram of various quantum spin models in different spatial dimensions. The bipartite entanglement is obtained from a tensor network representation of the ground state wave-function. Three spin-1/2 models (Ising, XY, XXZ, all in a transverse field) are investigated. Infinite imaginary-time evolution (...
متن کاملQuantum Discord and Information Deficit in Spin Chains
We examine the behavior of quantum correlations of spin pairs in a finite anisotropic XY spin chain immersed in a transverse magnetic field, through the analysis of the quantum discord and the conventional and quadratic one-way information deficits. We first provide a brief review of these measures, showing that the last ones can be obtained as particular cases of a generalized information defi...
متن کاملNumerical Approach for the Study of the Spin-1/2 XY Chains Dynamic Properties
The paper presents a numerical approach for the calculation of thermodynamics and spin correlations for spin-2 XY chains. To illustrate the approach we performed exact finite-chain calculations of all time-dependent two-spin correlation functions for the spin-2 Ising chain in the transverse field. The computed correlation functions permit to evaluate the frequency-dependent susceptibilities and...
متن کاملEntanglement entropy of excited states
We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin-chain. For the latter, we developed a numerical application of algebraic Bethe Ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the propertie...
متن کاملPersistence of entanglement in thermal states of spin systems
We study and compare the persistence of bipartite entanglement (BE) and multipartite entanglement (ME) in one-dimensional and two-dimensional spin XY models in an external transverse magnetic field under the effect of thermal excitations. We compare the threshold temperature at which the entanglement vanishes in both types of entanglement. We use the entanglement of formation as a measure of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quantum Information & Computation
دوره 11 شماره
صفحات -
تاریخ انتشار 2011